EFFECT OF INDIGENOUS ANTHELMINTIC CARICA PAPAYA AGAINST GASTROINTESTINAL NEMATODES IN CATTLE

Bhoopendra Kumar*, Y.P. Sahni, Nitesh Kumar

Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and AH, Jabalpur - (M.P.)

ABSTRACT
The anthelmintic efficacy of Carica papaya was elaborated against gastrointestinal nematode and effect on haemato-biochemical parameter in cattle. Cattle were treated with Carica papaya cold aqueous extract 500mg/kg body weight for 10 days. Haemato-biochemical parameters Hb, TEC, TLC, PCV, ESR, DLC, Total serum protein, serum albumin, SGOT, lactate dehydrogenase (LDH) and serum glucose measured at the beginning and 10th day of post treatment. The mean egg per gram of faeces (EPG) was done on day 1st (Pre-treatment) and day 10th, 20th, 30th day of post treatment. Cattle treated with cold aqueous extract Carica papaya exhibited effect on haemato-biochemical parameters, increase in Hb, TEC, PCV, Monocytes lymphocytes, total serum protein, serum albumin and serum glucose however, TLC, ESR eosinophils, SGOT and serum lactate dehydrogenase (LDH) was significantly decreased. Cold aqueous extract Butea frondosa exhibited a gradual decrease in EPG of parasites; Trichostrongyles, Toxocara, Oesophagostomum and Trichuris spp. on day 10, 20 and 30 post treatments. The maximum anthelmintic efficacy was found against Trichuris spp. 94.4 percent on post day of treatment. The anthelmintic efficacy against Oesophagostomum spp., Trichostrongylus spp and Toxocara spp. was exhibits 86.8, 86.7 and 79.8 percent respectively. It can be concluded that cold aqueous extract of Carica papaya showed good anthelmintic efficacy so that it can be used as an alternate anthelmintic and will be cost effective.

KEYWORDS: Anthelmintic, Carica papaya.
INTRODUCTION
Endoparasitic infestation is one of the major problems in livestock animals which are clinically characterized by enteritis, diarrhoea, constipation, dysentery, anaemia, emaciation, dehydration and death\(^1\) (Ahmad et al., 1990). A number of synthetic anthelmintic are available and used for the treatment of helminthiasis. The improper use of anthelmintic resulted in emergence of resistance in worms.

Medicinal plants are of great value in the treatment of parasitic infestation. Several modern researchers have elaborated the use of natural plants, being safer than synthetic chemicals. Modern allopathic drugs are often not available at the door of farmers or may be expensive to poor livestock raiser.

For these instances herbal anthelmintic offers a valuable alternative in the treatment of parasitic infestation in animals. *Carica papaya* commonly known as ‘Papaya’ belongs to family Caricaceae and its fruits, leaves latex and roots are used medicinally. The application of papaya latex and powdered air-dried seeds has been claimed as an anthelmintic.

MATERIALS AND METHODS
Collection and processing of herbal plant seeds
Seeds of *Carica papaya* were obtained from the Department of Aromatic and Medicinal Plants, College of Agriculture Science, Jawaharlal Nehru Krishi VishwaVidyalaya, Jabalpur. Seeds were crushed, powdered and sieved through muslin cloth. The aqueous extract of the seeds was prepared\(^2\) as per method given by Rosenthaler (1930).

Collection of faecal samples
Freshly laid or rectal faecal samples of each experimental animal were collected in an individually labelled polythene bag before and after treatment on the scheduled day.

Examination faecal for eggs of gastrointestinal nematodes
The assessment of status of parasitic infestation was made on the basis of faecal examination by qualitatively by modified sheather’s sugar floatation technique\(^3\) (Sloss et al., 1994) and quantitative techniques by modified McMaster egg-counting technique\(^3\) (Sloss et al., 1994) for the eggs in naturally infected cattle. Faecal examination was done on day 0 (before treatment) and on day 10th day 20th and 30th (after treatment).
Calculation of Percent efficacy

Percent efficacy of anthelmintic activity of plants will be calculated by using the following formulae[4] (Soulsby, 1982).

\[
\text{% efficacy} = \frac{\text{Mean EPG zero days} - \text{Mean EPG after treatment}}{\text{Mean EPG after treatment}} \times 100
\]

Determination of effect of C. papaya on Haemato-Biochemical profiles

The effect of aqueous of C. papaya was studied on various clinical parameters at zero day (pre-treatment) and 10, 20 and 30 day (post treatment), haematological and biochemical parameters at zero day (pre-treatment) and 10 day (post treatment).

Collection of blood sample

The blood samples were collected aseptically from jugular vein of cattle on 0 day and 10 day (control and experimental groups). Approximately 3 ml blood collected in heparinised vial and 3 ml blood collected for serum separation. The following haematological and biochemical parameters were studied[5] as per method (Feldman et al., (2000). Haemoglobin concentration (Hb g/dl), Total erythrocyte count (TECx10⁶/μl), Total leukocytes count (TLCx10³), Packed cell volume (PCV %), Erythrocyte sedimentation rate (ESR) (mm/hr), Differential leukocyte count (DLC %) and the biochemical parameters were studied viz, Total serum protein (mg/dl), Serum albumin (mg/dl), Serum SGOT (IU/L), Serum lactate dehydrogenase (IU/L) and Serum glucose (g/dl).

Anthelmintic treatment in cattle

The powdered seeds and aqueous extract of seeds of C. Papaya were administered orally in animals @ 500mg/kg bwt continuously for 10 days.

Statistical analysis

The data were analysed by Students‘t’- test as per the method[6] (Snedecor and Cochran, 1994).

RESULT

Parasitic infected animals were treated with crude powder of C. Papaya (500 mg/kg, orally, daily for 10 consecutive days). The animals showed an improvement in general health condition along with increased appetite. CNS activity was improved. Colour and consistency of faeces observed to be normal after treatment. Animals responded effectively to pedal,
palpebral, touch, swallowing reflexes and recovered from anaemic condition. The body temperature of animal improved from 100.6 ± 0.05 to 101.8 ± 0.02 °F.

Table-1: Clinical profile in Cattle treated with powder and cold aq. ext. of *C. papaya* (500 mg/kg orally, daily for 10 days daily)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Clinical parameters</th>
<th>Pre treatment</th>
<th>Post treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day 0</td>
<td>Day 5</td>
</tr>
<tr>
<td>1.</td>
<td>CNS activity</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>2.</td>
<td>Body reflexes</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>4.</td>
<td>Clinical symptoms</td>
<td>Anaemic, Isolated</td>
<td>Pale M.M</td>
</tr>
<tr>
<td>5.</td>
<td>Behavioural changes</td>
<td>Severe dullness</td>
<td>Dullness</td>
</tr>
<tr>
<td>6.</td>
<td>Body temp. (0F)</td>
<td>100.6 ± 0.05</td>
<td>101.2 ± 0.08</td>
</tr>
<tr>
<td>7.</td>
<td>Effect on secretions</td>
<td>Dry muzzle</td>
<td>Moist muzzle</td>
</tr>
<tr>
<td>8.</td>
<td>Faecal colour and consistency</td>
<td>Diarrhoeic dark green</td>
<td>Diarrhoeic greenish</td>
</tr>
<tr>
<td>9.</td>
<td>Excretion of urine</td>
<td>Dark Yellowish</td>
<td>Yellowish</td>
</tr>
</tbody>
</table>

Haematological observations in cattle treated with cold aqueous extract of *C. papaya*:
The effect of cold aq. ext. of *C. papaya* on different haematological parameters has been depicted in the Table-1. The data revealed significant (p < 0.01) rise in mean Hb, mean TEC, PCV, However the mean value of TLC, neutrophils and eosinophils was significantly (p<0.05) decreased.

Table-2: Effect of aqueous extract of *C. papaya* (500 mg/kg, orally, daily for 10 days) on haematological parameters in cattle

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre treatment (day zero)</th>
<th>Post treatment (day 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/dl)</td>
<td>7.77 ± 0.14</td>
<td>9.20 ± 0.11**</td>
</tr>
<tr>
<td>Total erythrocyte count (x106)</td>
<td>6.11 ± 0.21</td>
<td>8.10 ± 0.08**</td>
</tr>
<tr>
<td>Total leukocyte count (x103)</td>
<td>12.77 ± 0.45</td>
<td>9.17 ± 0.57*</td>
</tr>
<tr>
<td>Packed cell volume (%)</td>
<td>25.52 ± 0.26</td>
<td>34.48 ± 0.35**</td>
</tr>
<tr>
<td>Erythrocyte sedimentation (mm/hr)</td>
<td>0.92 ± 0.24</td>
<td>0.27±0.11*</td>
</tr>
<tr>
<td>Differential leukocyte (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>49.30 ± 0.41</td>
<td>62.5 ± 0.57**</td>
</tr>
<tr>
<td>Monocyte</td>
<td>2.67 ± 0.33</td>
<td>3.67 ± 0.33*</td>
</tr>
<tr>
<td>Neutrophil</td>
<td>29.67 ± 0.52</td>
<td>27.83 ± 0.61*</td>
</tr>
<tr>
<td>Eosinophil</td>
<td>18.50 ± 0.43</td>
<td>6.00 ± 0.37**</td>
</tr>
</tbody>
</table>

*Significant P<0.05
** Significant P<0.01
Biochemical observations in cattle treated with cold aqueous extract of *C. papaya*:
The effect of cold aq. ext. of *C. papaya* on different biochemical parameters has been shown in the Table-2. The data showed significant (p < 0.01) increase in total serum protein mean value, mean serum albumin and serum glucose also whoever. The mean values of SGOT and LDH were highly significantly (p < 0.01) decreased.

Table-3:- Effect of aqueous extract of *C. papaya* (500 mg/kg, orally, daily for 10 consecutive days) on biochemical parameters in cattle

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre treatment (day zero)</th>
<th>Post treatment (day 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total serum protein (g/dl)</td>
<td>6.04 ± 0.14</td>
<td>7.74 ± 0.07**</td>
</tr>
<tr>
<td>Serum albumin</td>
<td>2.04 ± 0.06</td>
<td>3.38 ± 0.06**</td>
</tr>
<tr>
<td>SGOT (IU/L)</td>
<td>138.02 ± 0.65</td>
<td>84.87 ± 0.41**</td>
</tr>
<tr>
<td>Lactate dehydrogenase (IU/L)</td>
<td>2355.67 ± 2.45</td>
<td>998.27 ± 2.09**</td>
</tr>
<tr>
<td>Serum glucose (g/dl)</td>
<td>38.48 ± 0.44</td>
<td>46.22 ± 0.62**</td>
</tr>
</tbody>
</table>

*Significant P<0.05 ** Significant P<0.01

Effect of *C. papaya* (cold aqueous extract) on mean EPG of parasites
Cattle treated with cold aq. ext. of *C. papaya*, the mean EPG of *Trichostrongyles spp.*, *Toxocara spp.*, *Oesophagostomum spp.* and *Trichuris spp.* was significantly (p<0.01) reduced (Table-3). The mean *Trichuris spp.* EPG was reduced from 2216.7 ± 60.1 to 83.3 ± 16.7 on day 30 after treatment which was found to be highly significant. The percent efficacy was calculated to be 96.2 percent on day 30. Similarly, EPG of *Oesophagostomum spp.*, *Trichostrongyles spp.*, and *Toxocara spp.* was declined 84.4, 82.2 and 83.0 percent on day 30.

Table-4:-Mean EPG and percent anthelmintic efficacy of *C. papaya* (cold aqueous extract) against gastrointestinal nematodes in cattle

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parasites</th>
<th>Pre treatment Zero day mean (EPG±SE)</th>
<th>Post treatment</th>
<th>Percent efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10th day mean (EPG±SE)</td>
<td>20th day mean (EPG±SE)</td>
<td>30th day mean (EPG±SE)</td>
</tr>
<tr>
<td>1.</td>
<td>Trichostrongyles</td>
<td>2716.7±47.7</td>
<td>750±52.3**</td>
<td>616.7±36.5</td>
</tr>
<tr>
<td>2.</td>
<td>Toxocara</td>
<td>1866.7±49.4</td>
<td>516.7±30.7**</td>
<td>350±22.4</td>
</tr>
<tr>
<td>3.</td>
<td>Oesophagostomum</td>
<td>2666.7±49.4</td>
<td>550±22.4**</td>
<td>450±22.4</td>
</tr>
<tr>
<td>4.</td>
<td>Trichuris</td>
<td>2216.7±60.1</td>
<td>283.3±30.7**</td>
<td>183.3±30.7</td>
</tr>
</tbody>
</table>

*Significant P<0.05 ** Significant P<0.01
Fig. 1 Egg of different parasites observed in faeces of Cattle. 100X

Oesophagostomum spp.
Trichostrongyles spp.
Trichuris spp.
Toxocara spp.

Fig. 2 Egg of different parasites observed in faeces of Cattle. 400X
DISCUSSION

The observations recorded in this study clearly indicating that following treatment with *C. papaya*, there was a significant increase in haematological parameters such as Hb, TEC and PCV in cattle during the course of treatment. The present findings of increase in mean Hb concentration, TEC and PCV reported in present study[7-12], Pal and Dasgupta, (2006); Padmaja *et al.* (2006); Das *et al.* (2005); Islam *et al.* (2005); Deshmukh *et al.* (2004) and Ramteke *et al.* (2004). The findings emanating from the present study indicate that the enhancement in level of Hb and TEC content of blood with *C. papaya* might be due to elimination of blood sucking gastrointestinal parasites and also due to increase in iron absorption from gastrointestinal tract. The significant increase in lymphocytes and monocytes after treatment was also recorded[9] Islam *et al.* (2005). The immunossupression is caused by heavy load of parasitic infestation in animals[13]. However, haematological profile indicating an increase in lymphocyte and monocyte counts may be due to an immunostimulatory effect of indigenous extracts *C. papaya* exhibits potential immunomodulatory activity, significant enhancement of phytohaemagglutinin responsiveness of lymphocytes and also inhibit the complement mediated haemolytic pathway[14] Mariluz *et al.* (2003). An increase in lymphocyte count following the administration of indigenous extracts, recorded in the present study[14] Mariluz *et al.* (2003).

Biochemical study

The substantial burden of GIT nematode alters the biochemical parameters leading to hypoproteinemia, hypoalbumenia, decreased serum glucose level, increase SGOT and LDH in chronic parasitic infestation. The observations recorded in the present study clearly indicate that after treatment with *C. papaya*, there was a significant increase in biochemical parameters such as total serum protein, serum albumin and serum glucose levels. The increase in mean total serum protein, serum albumin and serum glucose levels reported in present study[8,12,15-16] (Deshmukh et al., 2004; Ramteke et al., 2004; Rahman et al., 2003; Waghmare et al., 2000).

The findings emanating from the present study suggest that an enhancement in level of total serum protein, serum albumin and serum glucose level which could be due to removal of parasitic load from gastrointestinal tract. The endoparasitic infestation causes hypersecretion of mucous and protein leakage from gastrointestinal tract, which could be due to inflammation of intestinal epithelium[11,17] (Padmaja et al., 2006; Holmes, 1986). The
decrease in SGOT level recorded after treatment with *C. papaya* [10] Pal and Dasgupta (2005). The findings indicated that increase of SGOT in parasitic infestation returned to normal after treatment which may be due to removal of worm load from gastrointestinal tract [10] (Pal and Dasgupta, 2005). The increase in LDH level in parasitic infestation also returned to normal after anthelmintic treatment with *B. frondosa* and *C. papaya* is due to removal of parasitic burden from GI tract. Worm load causes decrease in feed intake, nutrient utilization and damage of GI tract, which leads to emaciation and reduction in body muscle mass [18] (Symons, 1985).

Another indigenous plant, *C. papaya* was also employed in the present investigation to find out its anthelmintic efficacy against *Trichostrongyles, Toxocara, Oesophagostomum* and *Trichuris spp.* in cattle. The observations indicated anthelmintic efficacy *C. papaya* against *Trichuris spp.* to the extent of 96.2 percent which was found to be maximum among various spp. of parasites. The anthelmintic efficacy of *C. papaya* on other parasites viz: *Oesophagostomum* (84.4%), *Trichostrongyles* (83%) and *Toxocara* (82.2) were calculated in the present experiment.

Anthelmintic efficacy of *C. papaya* against other parasites such as *Strongyles spp., A. suum, H. polygyrus* and *H. nana* has been reported by various research workers. The effectiveness of *C. papaya* seeds against *Strongyles spp.* of parasite in sheep [19]. They further reported that oven dried seeds of *C. papaya* in the dose rate of 400 mg/kg b. wt. administered consecutive for 10 days, produced significant anthelmintic efficacy. The dose of *C. papaya* and duration of phytotherapy used in present study are in close agreement with findings of [19] Hounzangbe et al. (2001). The anthelmintic efficacy of *C. Papaya* latex (4 g /kg b. wt.) against investigated *A. suum* on day 7 post treatment [20] Satrija et al. (1994). The anthelmintic efficacy of *C. papaya* on gastrointestinal parasitism in chicken has been reported [21] (Mpoame and Essomba, 2000), who found that aq. decoction of papaya seeds @ 5g /litre of water caused significant reduction in EPG count of *Heterakis spp.*, *Eimeria spp.* and *Capillaria spp.* of worms in poultry. However the available literature did not reveal any scientific data on anthelmintic efficacy of *C. Papaya* against *Trichostrongyles, Toxocara, Oesophagostomum* and *Trichuris spp.* of parasites in cattle.
CONCLUSION

The cold aqueous extract of Carica papaya showed good anthelmintic efficacy so that it can be used as an alternate anthelmintic and will be cost effective.

ACKNOWLEDGEMENT

I am thankful to all the authors who’s helped me during my research.

REFERENCES

2. Rosenthaler L. The chemical investigation of plants. Publ., Bell and Sons, London; 1930; 36.

