A COMPARATIVE STUDY OF BLOOD PRESSURE OF URBAN AND RURAL SCHOOL GOING BOYS OF PUNJAB

Vishaw Gaurav¹, Mukhwinder Singh²*, Pankaj Bhanot³, Sandeep⁴ and Ved Parkash⁵

¹Department of Education, Punjab, India.
²Department of Physical Education, SSM College, Dinanagar, Punjab, India.
³Department of Sports, Punjab, India.
⁴Department of Physical Education, Guru Nanak Dev University, Amritsar, Punjab, India.
⁵Department of Physical Education, SGGS Khalsa College Mahilpur, Punjab, India.

ABSTRACT

The purpose of this study was to compare the blood pressure between urban and rural school going boys of Punjab. A sample of fifty school going boys (Urban: N₁ = 50; the mean age is 14.9 ± 0.84 years; the mean height is 149.21 ± 1.01 cm; the mean weight is 47.91 ± 2.03 kg and mean BMI is 21.42 ± 0.99. and Rural: N₂ = 50; the mean age is 14.9 ± 0.84 years; the mean height is 149.61 ± 1.38 cm; the mean weight is 45.43 ± 0.75 kg and the mean BMI is 20.25 ± 0.51) were selected from different schools of Punjab, India. Height measurements were taken by using the standard anthropometric rod to the nearest 0.5 cm. The subject’s weight was measured with portable weighing machine to the nearest 0.5 kg. Blood pressure measurements were made by using a standard mercury sphygmomanometer. The independent samples t-test was applied to assess the differences of blood pressure between urban and rural school going boys. Results indicated that urban boys had significantly more body weight (p<0.05), body mass index (p<0.05), systolic and diastolic blood pressure (p<0.05) values as compared to rural boys.

KEYWORDS: Blood pressure, Urban, Rural, School, Boys.

INTRODUCTION

Blood pressure is the pressure exerted by circulating blood upon the walls of blood vessels (Samavat et al., 2013). High blood pressure usually in adults is defined as 140-mmHg or higher than that systolic blood pressure or 90-mmHg or higher than that diastolic blood
pressure (Nikpajoh, 2011). High blood pressure in childhood may be early expression of essential high blood pressure in adulthood (Nelson et al., 1992; Finta, 1993). High blood pressure is one of the leading causes of death in the world (Izadirad et al., 2013). High blood pressure is a major public health problem (Bouchard & Shephard, 1994). There are a billion people in the world suffering from high blood pressure and 4 million people die per year as a direct cause of high blood pressure (Samavat et al., 2013). The roots of essential hypertension in adults extend into childhood (WHO, 1985). Patients with hypertension are at high risk of stroke and cardiovascular disease up to 37% (Wilson et al., 1998). Data contained in the World Health Report (2002) showed that high blood pressure is a major contributing factor to all deaths in the world. The prevalence of high blood pressure was reported as 17% in Ahwaz City and as 7% in rural areas (Hojatzadeh & Naderi, 2000). Rural and urban areas living environments influence the level of physical activity (Sjolie & Thuen, 2002). Rural residence is commonly associated with a more dynamic, physically active lifestyle as compare to urban area. Some previous studies (Nielsen & Andersen, 2003; Al-Hazaa et al., 1994; Hagberg, 1990; Cooper et al., 1976; Montoye et al., 1972) suggested that more active subjects exhibited lower systolic and diastolic blood pressure and have a reduced risk of developing hypertension. Some studies (Steyn et al., 1993; Steyn et al., 1986; Seedat et al., 1982) indicated that the Indian population has the lowest incidence of hypertension (about 14%), while the urbanized Zulus have the highest incidence (25%). However, in rural Zulus, the incidence of hypertension is between 2% and 8% (Seedat et al., 1981), suggesting that urbanization may considerably increase the risk of hypertension. Therefore, the purpose of this study was to compare the blood pressure between urban and rural school going boys of Punjab.

MATERIALS AND METHODS

Subjects: A sample of fifty school going boys (Urban: \(N_1 = 50\); the mean age is 14.9 ± 0.84 years; the mean height is 149.21 ± 1.01 cm; the mean weight is 47.91 ± 2.03 kg and mean BMI is 21.42 ± 0.99. and Rural: \(N_2 = 50\); the mean age is 14.9 ± 0.84 years; the mean height is 149.61 ± 1.38 cm; the mean weight is 45.43 ± 0.75 kg and the mean BMI is 20.25 ± 0.51) were selected from different schools affiliated to Punjab School Education Board, Punjab, India. All the participants were informed about aim and methodology of the study and they volunteered to participate in this study. The purposive sampling method was used to select the subjects for the present study. The age of each subject was calculated from the date of birth as recorded in his school.
Methodology

Height measurements were taken by using the standard anthropometric rod to the nearest 0.5 cm. The subject’s weight was measured with portable weighing machine to the nearest 0.5 kg. BMI was calculated by the formula of; Body Mass Index = Weight/Height2. Blood pressure measurements were made by using a standard mercury sphygmomanometer as per recommendations of the American Heart Association (Kirkendall et al., 1981).

Statistical analyses

Values are presented as mean values and SD. Independent samples t tests were used to test if population means estimated by two independent samples differed significantly. Data was analyzed using SPSS Version 16.0.

RESULTS

Table-1: Physical Characteristics of Urban and Rural Boys.

<table>
<thead>
<tr>
<th>Variables</th>
<th>URBAN BOYS (N₁=50)</th>
<th>BOYS</th>
<th>RURAL BOYS (N₂=50)</th>
<th>BOYS</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>Mean 14.9</td>
<td>SD 0.84</td>
<td>Mean 14.9</td>
<td>SD 0.84</td>
<td>0.000</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>Mean 149.21</td>
<td>SD 1.01</td>
<td>Mean 149.61</td>
<td>SD 1.38</td>
<td>1.654</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>Mean 47.91</td>
<td>SD 2.03</td>
<td>Mean 45.43</td>
<td>SD 0.75</td>
<td>8.106*</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>Mean 21.42</td>
<td>SD 0.99</td>
<td>Mean 20.25</td>
<td>SD 0.51</td>
<td>7.363*</td>
</tr>
</tbody>
</table>

*Significant at 0.05 level

Table-1: depicts the physical characteristics of urban and rural boys. On analyzing the physical characteristics of the 50 urban boys, the mean age is 14.9 ± 0.84 years; the mean height is 149.21± 1.01cm; the mean weight is 47.91±2.03 kg and mean BMI is 21.42 ± 0.99.

On analyzing the physical characteristics of the 50 rural boys, the mean age is 14.9 ± 0.84 years; the mean height is 149.61 ± 1.38 cm; the mean weight is 45.43 ± 0.75kg and the mean BMI is 20.25 ± 0.51. Results indicated that urban boys had significantly more body weight and BMI values as compare to rural boys.

Table 2: Comparison of Systolic Blood Pressure and Diastolic Blood Pressure between Urban and Rural Boys.

<table>
<thead>
<tr>
<th>Variables</th>
<th>URBAN BOYS (N₁=50)</th>
<th>RURAL BOYS (N₂=50)</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic Blood Pressure</td>
<td>Mean 111.08</td>
<td>Mean 107.93</td>
<td>8.272*</td>
</tr>
<tr>
<td>(mmHg)</td>
<td>SD 1.78</td>
<td>SD 2.02</td>
<td></td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
<td>Mean 69.35</td>
<td>Mean 66.96</td>
<td>7.940*</td>
</tr>
<tr>
<td>(mmHg)</td>
<td>SD 1.00</td>
<td>SD 1.88</td>
<td></td>
</tr>
</tbody>
</table>

*Significant at 0.05 level
Table-2: depicts the comparison of resting systolic blood pressure and diastolic blood pressure between urban and rural boys.

Systolic Blood Pressure
In urban boys mean systolic blood pressure was 111.08± 1.78 mmHg and 107.93±2.02 mmHg in rural boys. There was statistically significant decrease in systolic blood pressure in rural boys as compared to urban boys.

Diastolic Blood Pressure
In urban boys mean diastolic blood pressure was 69.35 ±1.00 mmHg and 66.96 ±1.88 mmHg in rural boys. There was statistically significant decrease in diastolic blood pressure in rural boys as compared to urban boys.

DISCUSSION
The purpose of this study was to compare the blood pressure between urban and rural school going boys. The physical characteristics of urban and rural school going boys showed that urban boys had significantly more body weight and BMI values as compare to rural boys. The findings of the present study indicated that there was statistically significant decrease in systolic and diastolic blood pressure in rural boys as compared to urban boys. Residents of rural areas report overall better health and health behavior practices compared with their urban counterparts (Iversen et al., 2005). Students living in rural area are commonly associated with a physically active lifestyle as compare to urban area. The studies (Cooper et al., 1976; Montoye et al., 1972) that suggested the more active and fit subjects, exhibited lower systolic and diastolic blood pressures. The prevalence of high blood pressure was reported as 17% in Ahwaz City and as 7% in rural areas (Hojatzadeh & Naderi, 2000). Some other studies also reported that rural children were fitter than their urban counterparts (Wikczewski et al., 1996; Mehtap & Nihal, 2005). The results of the present study are agreement with the study of Uppal and Sareen (2000), they find out the rural area students had better cardiovascular fitness as compared to urban area students.

CONCLUSIONS
There were significant differences in body weight, body mass index, systolic and diastolic blood pressure between urban and rural boys. On average, urban boys had more weight, body mass index, systolic and diastolic blood pressure than rural boys.

ACKNOWLEDGEMENTS
Sincere thanks to Teachers who extended their enthusiastic co-operation in collecting the necessary data and to all those urban and rural boys without whom this research was not possible. We acknowledge the immense help received from the scholars whose articles are cited and included in references of this paper. We are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this paper has been reviewed and discussed.

REFERENCES

