ANTIMICROBIAL AND ANTIFUNGAL ACTIVITY OF TRIDAX PROCUMBENS LINN WHOLE PLANT ETHANOLIC EXTRACT ON DIFFERENT PATHOGENS AND ITS PHYTOCHEMICAL SCREENING

Patil Vishin Ashish* and Nitave Sachin Annsaheb

Dr. J. J. Magdum Trust’s, Anil Alias Pintu Magdum Memorial Pharmacy College, Dharangutti, Tal: Shirol, Dist: Kolhapur, Maharashtra.

ABSTRACT

The ethanolic extract of Tridax procumbens, linn (Asteraceae) (commonly known as Coat Buttons) were evaluated for antimicrobial activity and antifungal activity. The dried powder of Tridax procumbens (leaves, stems, roots and flowers) containing chemical constituent procumbent was extracted and the activity was studied. Various concentration (5 mg/ml, 10 mg/ml and 15 mg/ml) of ethanol were evaluated to study the activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus flavus, Candida albicans. The antibacterial activity was measured by agar well diffusion method and antifungal activity by disc diffusion method. Tridax procumbens (15 mg/ml) showed maximum zone of inhibition was against Gram positive bacteria Staphylococcus aureus (18 mm) and minimum against Gram negative bacteria Escherichia coli (8 mm).

Tridax procumbens (15mg/ml) showed maximum antifungal activity towards Aspergillus flavus (12mm) and Candida albicans (4mm). The results showed significant activity of Tridax procumbens and suggesting its use as natural antimicrobial agent. Ampicillin was used as standard antibacterial drug Normal saline solution and alcohol was used as control to study antimicrobial activity and Amphotericin B was used as antifungal drug to study antifungal activity. The results of present study indicated that ethanolic extract of Tridax procumbens linn shows has potent antimicrobial and antifungal activity.

KEYWORDS: Tridax procumbens, Antibacterial, Antifungal activity, S.aureus, E.coli, P.aeruginosa.
INTRODUCTION
Man always been surrounded by countless microorganisms. The disease producing microbes are playing a very important role in human life. Pathogenic microorganisms are always trying to develop resistance to the various antimicrobial agents used for their control. Therefore, the chemotherapy of communicable diseases has proved to be a continuous great effort. Scientists are forever in exploring of new antimicrobial agents to run the ever increasing menace of the microbes. Thus it is of overriding importance for the microbiologists to develop new resistant strains. Therefore, medicinal plants are gifts of nature to cure limitless number of diseases among human beings.\[^{[1]}\]

Tridax procumbens linn is commonly known as ‘Ghamra’ in Hindi and ‘Dagadi Pala’in Marathi. It is a weed found throughout India. A hispid, procumbent herb with woody base sometime rooting at the node, up to 60 cm high.\[^{[2]}\] Leaves are ovate-lanceolate 2 to 7 cm and lamina pinnatisect, sometimes three lobed, flowers in small, long peduncled heads. It is commonly used in Indian traditional medicine as anticoagulant, antifungal and insect repellant, in bronchial catarrh, diarrhea and dysentery. Moreover it possesses wound healing activity and promotes hair growth. The leaf gel possesses antiseptic, insecticidal and parasiticidal properties.\[^{[3]}\] The plant also shows various pharmacological activities like Immunomodulatory, Antidiabetic, Anti hepatotoxic & Anti-oxidant, Anti-inflammatory, Analgesic, and marked depressant action on respiration.\[^{[4]}\]

Vernacular Names
English- Coat Buttons and Tridax Daisy, Hindi- Ghamra, Sanskrit- Jayanti Veda, Marathi-Dagadi Pala, Telugu- Gaddi Chemanthi, Tamil- Thata poodu, Malayalam-Chiravanak, Spanish- Cadilllp Chisaca, French- Herbe Caille, Chinese- Kotobukigiku.\[^{[5]}\]

MATERIAL AND METHOD
Collection And Authentication Of Plant Material
Fresh whole plant (leaves, stems, roots and flowers) of *Tridax procumbens* were collected from R.K.Nagar, Kolhapur, premises and authenticated by Dr.Miss. K.R.Datar (Head of Dept of botany) Deccan Education Society Willingdon college, Sangli. After authentication, fresh plant was collected in bulk, washed under running tap water, dried under shade for a period of 7 days and then pulverized in mechanical grinder to obtain coarse powder. The dried powder was stored in airtight bottles.
Chemicals
Methanol, Dextrose, Peptone, Agar, Distilled water, Ampicillin, Amphotericin B, Barium chloride dehydrate, Sulphuric acid.

Fungal strains
The bacterial and fungal strains for the study were obtained from Govt. Medical college, (Microbiology and bacteriology department). The fungal strains and bacterial strains used in the study are Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus flavus, Candida albicans.

Ethanol extract of *Tridax procumbens*
The coarse powdered material (each 100 gm) was soaked in 95% ethanol (500ml) by Soxhletion technique for continuous 72 hours. The extract was evaporated to dryness until dry mass is obtained. The yield obtained was 0.483%.[6]

ASSESSMENT OF ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY[7,8]
1. Preparation of Inocula
From fungal cultured slants, several colonies were transferred to 5ml of sterile distilled water. It is mixed for some seconds to ensure homogeneity and further diluted to match the turbidity with 0.5 McFarland standard solution Corresponding to (1 x 10^6 CFU/ml).

2. Preparation of samples
Tridax procumbens linn alcoholic sample solutions were prepared at 5mg/ml, 10mg/ml, 15mg/ml concentrations in alcohol ii) Amphotericin B was taken as standard antifungal drug to study antifungal activity and Ampicillin was taken as standard antibacterial drug to study antibacterial activity.

3. Disc diffusion method
i) Sabouraud Dextrose agar is prepared as fungal media and sterilized.
ii) All glasswares, filter disc, petriplates, extract dilutions were sterilized in autoclave.
iii) In aseptic technique, using sterile swab a bacterial lawn is made on sterile petri plates from microbial inoculums suspension. Swab is made in one direction by rotating plate at 90º.
iv) Sterile filter discs of 6mm diameter were impregnated with about 0.1ml/disc of each extract dilution solution and placed on agar plate in aseptic condition.
v) Plates are incubated at 28ºC-30ºC for 2 days. Alcohol, Sterile distilled water are kept as control. After 2 days zone of inhibition was measured. In case of alcoholic dilutions of *Tridax procumbens linn* the zone of inhibition of alcohol is subtracted from control alcohol zone of inhibition.

3. Agar Well Diffusion Method

The antibacterial activity of Tridax procumbens was evaluated by using agar well diffusion method. Bacterial cultures are mixed in nutrient agar medium and poured in Petri plates. Wells or cups of 5mm size were made with sterile borer into agar plates containing the bacterial inoculums. 2mg of crude *Tridax procumbens linn* was completely dissolved in 2ml of Ethanol 95%. Antibacterial activity was measured at different concentrations of extract ranging from 5,10,15 mg/ml drugs *Tridax procumbens linn*. The zone of inhibition of alcohol is subtracted from control alcohol zone of inhibition. Ethanol 95% served as control and antibiotic Ampicillin served as standard.

RESULT

Tridax procumbens (15 mg/ml) showed maximum zone of inhibition was against Gram positive bacteria *Staphylococcus aureus* (18mm) and minimum against Gram negative bacteria *Escherichia coli* (8mm). *Tridax procumbens* (15mg/ml) showed maximum antifungal activity towards *Aspergillus flavus* (12mm) and *Candida albicans* (4mm).

Table 1: Effect of *Tridax procumbens Linn* extract on growth of bacteria in vitro. Zone of inhibition (mm)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Extract Concentration</th>
<th>Staphylococcus aureus ZI (mm)</th>
<th>Pseudomonas aeruginosa ZI (mm)</th>
<th>Escherichia coli ZI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5mg/ml</td>
<td>10 mm</td>
<td>7 mm</td>
<td>8 mm</td>
</tr>
<tr>
<td>2.</td>
<td>10mg/ml</td>
<td>12 mm</td>
<td>10 mm</td>
<td>12 mm</td>
</tr>
<tr>
<td>3.</td>
<td>15mg/ml</td>
<td>18 mm</td>
<td>16 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>4.</td>
<td>Ampicillin (15mg/ml)</td>
<td>18 mm</td>
<td>9 mm</td>
<td>9 mm</td>
</tr>
</tbody>
</table>

Table 2: Effect of *Tridax procumbens Linn* extract on Pathogenic fungi Zone of inhibition (mm)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Extract Concentration</th>
<th>Aspergillus flavus ZI (mm)</th>
<th>Candida albicans ZI (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5mg/ml</td>
<td>8 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>2.</td>
<td>10mg/ml</td>
<td>10 mm</td>
<td>8 mm</td>
</tr>
<tr>
<td>3.</td>
<td>15mg/ml</td>
<td>12 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>4.</td>
<td>Amphotericin B (15mg/ml)</td>
<td>8 mm</td>
<td>14 mm</td>
</tr>
</tbody>
</table>
Table 3: Phytochemical Evaluation of *Tridax procumbens linn*[^9]

<table>
<thead>
<tr>
<th>CHEMICAL TESTS</th>
<th>RESULT</th>
<th>CHEMICAL TESTS</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test For Carbohydrates</td>
<td></td>
<td>Test For Tannins</td>
<td></td>
</tr>
<tr>
<td>A. Benedicts Test</td>
<td>Positive</td>
<td>A.5% Ferric chloride</td>
<td>Positive</td>
</tr>
<tr>
<td>B. Fehling’s Test</td>
<td>Positive</td>
<td>B. Acetic acid test</td>
<td>Positive</td>
</tr>
<tr>
<td>C. Molisch’s Test</td>
<td>Positive</td>
<td>C. Dil. KMnO$_4$ Test</td>
<td>Positive</td>
</tr>
<tr>
<td>Test For Steroids</td>
<td>Positive</td>
<td>Test For Flavonoids</td>
<td>Positive</td>
</tr>
<tr>
<td>Salkowski’s test</td>
<td></td>
<td>A. Lead acetate test</td>
<td>Positive</td>
</tr>
<tr>
<td>Test For Alkaloids</td>
<td>Positive</td>
<td>B. NaOH + Dil.acid</td>
<td>Positive</td>
</tr>
<tr>
<td>Dragendorff’s test</td>
<td>Positive</td>
<td>Test for Glycosides</td>
<td>Positive</td>
</tr>
<tr>
<td>Wagner’s test</td>
<td>Positive</td>
<td>Borntrager’s test</td>
<td>Positive</td>
</tr>
<tr>
<td>Mayer’s test</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X axis: concentration in mg/ml Y axis: zone of inhibition in mm

Figure 1: Effect of *Tridax procumbens Linn* extract on Pathogenic bacteria Zone of inhibition (mm).

X axis: concentration in mg/ml Y axis: zone of inhibition in mm

Figure 2: Effect of *Tridax procumbens Linn* extract on Pathogenic fungi Zone of inhibition (mm)
DISCUSSION
The occurrence of antibacterial and antifungal substances in the higher plants in well established. Plants have provided a source of inspiration for novel drug compounds as plants derived medicines have made significant contribution towards human health. Phytomedicines can be used for the treatment of diseases as is done in case of Unani and Ayurvedic system of medicines of it can be the base for the development of a medicine, a natural blueprint for the development of a drug. Successive isolation of botanical compounds from plant material is largely dependent on the type of solvent used in the extraction procedure. The results showed significant activity of *Tridax procumbens* and suggesting its use as natural antimicrobial agent. The result of present study indicated that ethanolic extract of *Tridax procumbens* shows potent antimicrobial and antifungal activity.

CONCLUSION
From the recent study it is concluded that, as dose of the *Tridax procumbens* increases the antimicrobial activity as well as antifungal activity increases. From the observations it clearly indicate that *Tridax procumbens* has potent antimicrobial activity as well as antifungal activity but it act by dose dependent manner.

ACKNOWLEDGEMENT
The Authors are gratefully thankful to Hon’ble Mr.Veejhay J. Magdum, Chairman Dr. J. J. Magdum Trust, Jaysingpur for permitting & providing necessary facilities for carrying out to do research work.

Figure 3: Effect of alcoholic extract of *Tridax procumbens* linn on *Aspergillus Flavus*
REFERENCES
6. http://e.m.wikipedia.org/Agar-diffusion-test