DESIGN, DEVELOPMENT AND CHARACTERIZATION OF LOVASTATIN TRANSFERSOMAL LOADED GELS FOR TRANSDERMAL DRUG DELIVERY

V. Lakshmi Narasaiah*1, Dr.P.Padmabhushanam2, Dr. V. Sai Kishore3

1Department of Pharmaceutics, Dr SGIPS, Markapur, Prakasam, A.P.
2Department of Pharmaceutical Analysis, Monad University, Hapur, U.P.
3Department of Pharmaceutics, Bapatla College of Pharmacy, Bpatla, Guntur, A.P.

ABSTRACT
The objective of the present study was to develop the controlled release transdermal drug delivery systems of Lovastatin using transfersomes incorporated in gels, which will control the release of drug, increasing the bioavailability of the drug and thus decreasing the dosing frequency of the drug. It was investigated by encapsulating the drug in various transfersomal formulations composed of various ratios of Soya Lecithin: Span 80 or Tween 80 or sodium deoxycholate prepared by rotary evaporation sonication method. Lipid:surfactant ratio of 90:10 is more effective when compared to other ratios. Experimental results of the present study showed that deformable lipid vesicles improve the transdermal delivery, prolong the release, and improve the site specificity of the lipophilic model drug, Lovastatin. The drug diffusion studies showed that a Transfersome vesicle follows zero order kinetics and mechanism of release follows peppas model.

KEYWORDS: Thin film hydration method, Anti-hyperlipidemic, Controlled release, Lipid, Surfactant.

INTRODUCTION
Transfersomes have recently been introduced, which are capable of transdermal delivery of low as well as high molecular weight drugs.1 Transfersomes have been defined as specially designed vesicular particles, consisting of at least one inner aqueous compartment surrounded by a lipid bilayer with appropriately tailored properties. Accordingly, transfersomes resemble
lipid vesicles, liposomes, in morphology but, functionally, transfersomes are sufficiently deformable to penetrate pores much smaller than their own size. They are (quasi) metastable, which makes the vesicle membrane ultra-flexible, and, thus, the vesicles are highly deformable.\(^2\)

Higher hydrophilicity allows transfersome membrane to swell more than conventional lipid vesicle bilayers. Higher membrane hydrophilicity and flexibility both help transfersomes to avoid aggregation and fusion.\(^3\)

Lovastatin is a cholesterol-lowering agent and is structurally similar to the HMG, a substituent of the endogenous substrate of HMG-CoA reductase. Lovastatin lowers hepatic cholesterol synthesis by competitively inhibiting HMG-CoA reductase, the enzyme that catalyzes the rate-limiting step in the cholesterol biosynthesis pathway via the mevalonic acid pathway.\(^4\) Due to its short biological half life (5.3 hours) and low bioavailability (5%), it requires frequent administration.\(^5\) The maintenance of a constant plasma drug concentration of an anti lipidemic drug is important in ensuring the desired therapeutic response and to improve patient compliance, hence the objective of the study was made to develop controlled release transdermal drug delivery system of Lovastatin using transfersomes incorporated in a carbopol gel, which will control the release of drug, increasing the bioavailability of the drug and thus decreasing the dosing frequency of the drug.

MATERIALS AND METHODS

Lovastatin was received as gift sample from Dr.Reddy’s Laboratories, Hyderabad. Soya lecithin, sodium deoxycholate, triton X-100 was purchased from Himedia Laboratories, Mumbai. Span 80, tween 80 was purchased from sigma Aldrich laboratories.

Preparation of transfersomes by thin film hydration technique

Transfersomes were prepared by rotary evaporation-sonication method.\(^6-7\) Different edge activators in different molar ratios were used for the formulation of transfersomes, the composition of these formulations is shown in Table 1. The lipid mixture (500mg) consist of phospholipid (Soya Lecithin), edge activator (Span 80, or sodium deoxycholate or Tween 80) and drug (10 mg/ml) in different ratios was dissolved in an organic solvent mixture consist of chloroform and methanol (2:1, v/v) then placed in a clean, dry round bottom flask. The organic solvent was carefully evaporated by rotary evaporation (Buchi rotavapor R-3000, Switzerland) under reduced pressure above the lipid transition temperature (at 60\(^0\)C for 1 hr)
to form a lipid film on the wall of the flask. The final traces of the solvents were removed by subjecting the flask to vacuum over night. The dried thin lipid film deposited on the wall of the flask was hydrated with a phosphate buffer solution (pH 6.4) by rotation for 1 hr at room temperature at 60 rpm. The resulting vesicles were swollen for 2 hrs at room temperature to get large multi lamellar vesicles. To prepare small transfersome vesicles, the resulting vesicles were sonicated at 100 kHz, 80 Amp for 30 minutes at pulse on 30 sec and pulse off 50 sec using a probe sonicator (Orchid Scientifics, Nasik). The obtained suspension was passed through a series of 0.45µ and 0.22µ polycarbonate filters and then stored at 4°C.

Evaluation tests for transfersome formulations

Transfersomes were evaluated for entrapment efficiency, *in vitro* diffusion study, vesicles size and size distribution.[8]

Entrapment Efficiency (EE %)

The entrapment efficiency of transfersomes was determined after separation of the non-entrapped drug. Entrapment efficiency of Lovastatin in transfersomal formulations can be done by Freeze thawing/centrifugation method.[8] 1 ml samples of transfersomal dispersion were frozen for 24 hrs at −20 °C in eppendorf tubes. The frozen samples were removed from the freezer and let to thaw at room temperature, then centrifuged at 14,000 rpm for 50 min at 4°C. Tranfersomal pellets were re-suspended in Phosphate buffer solution (pH 7.4) and then centrifuged again. This washing procedure was repeated two times to ensure that the un-entrapped drug was no longer present. The supernatant liquid was decanted. The drug remained entrapped in transfersomes was determined by complete vesicle disruption using 0.1% Triton X-100. For this, 2ml of 0.1% triton X 100 was added to 2ml of transfersomes suspension. This mixture was subjected to centrifugation for 30 min and the resultant solution was analysed by UV-Visible spectrophotometer for the drug. The drug content was determined spectrophotometrically at 239 nm using Phosphate buffer solution (pH 7.4) as a blank. Each result was the mean of three determinations (±SD). The entrapment efficiency was defined as the percentage ratio of the entrapped drug concentration to the total drug concentration and calculated according to the following equation.

\[
EE\% = \frac{\text{Total Drug Concentration} - \text{Free Drug Concentration}}{\text{Total Drg Concentration}} \times 100
\]
Vesicles Size and Size Distribution
The vesicles size and size distribution were determined by dynamic light scattering method[9] (DLS), using a computerized inspection system (Horiba Nanopartica SZ-100, U.K.). For vesicles size measurement, vesicular suspension was mixed with the appropriate medium and the measurements were conducted in triplicate.

Determination of zeta potential
Zeta potential is a measure of the surface charge of dispersed particles in relation to dispersion medium. It was determined by using HORIBA zeta sizer. The zeta potential value is a measure of the physical stability of the nanosponges.[10]

Vesicles Shape
Transfersomes vesicles were visualized by Scanning Electron Microscopy (SEM). The sample for the SEM analysis were prepared by applying a monolayer of the transfersome dispersion on to one side of double adhesive stub and the stubs were then coated with platinum using the auto fine coater (JFC-1600, JEOL, Japan). The scanning electron microphotographs of Transfersomes were taken using (JSM-6360, JEOL, Japan) scanning microscope.[11]

Preparation of rate controlling membrane
Solvent evaporation technique was employed in the present work for the preparation of Cellulose acetate films. The polymer solutions were prepared by dissolving the polymer (2\% w/w Cellulose acetate) in 50 ml of Ethyl acetate-Methanol (8:2). Dibutyl phthalate at a concentration of 40\% w/w of the polymer was used as a plasticizer. 20 ml of the polymer solution was poured in a Petri plate (9.4 cm diameter) placed on a horizontal flat surface. The rate of evaporation was controlled by inverting a funnel over the Petri plate. After 24 hours the dried films were taken out and stored in a desiccator.[12]

Preparation of transfersomes loaded gels
Accurately weighed quantity of 500 mg of carbopol 934 was dispersed in 5 ml of distilled water and was allowed for swelling over night. The swollen carbopol was stirred for 60 minutes at 800 rpm. The previously prepared required Lovastatin equivalent transfersomes, methyl paraben and propyl paraben were incorporated into the polymer dispersion with stirring at 500 rpm by a magnetic stirrer for 1 hour. The pH of above mixture was adjusted to 7.4 with tri ethanolamine (0.5\%). The gel was transferred in to a measuring cylinder and the
volume was made up to 10ml with distilled water.[13] The transfersomes formulations (F1-F9) were incorporated into the carbopol gels (LTG1-LTG9). In order to achieve the more prolonged release LTG10, LTG11 and LTG12 were prepared by using 500 mg of Methyl cellulose, Sodium carboxy methyl cellulose and Hydroxy propyl methyl cellulose respectively instead of carbapal. Lovastatin transfersomes prepared with Soya Lecithin: Tween 80 in 90: 10 ratio were incorporated in those formulations.

Preparation of mouse skin
Swiss albino mouse aged between 6 to 8 weeks were taken and sacrificed by cervical dislocation. The epidermal skin was carefully removed and rinsed with normal saline to remove any loose materials. The epidermal skin was cut into 5 cm length. The epidermal skin was stored in cold (5-8°C) normal saline solution.[14]

Evaluation of drug reservoir gels
The drug reservoir gels were evaluated for the Drug content, pH, viscosity, extrudability and Spreadability.[15]

Design of membrane moderated transdermal therapeutic system
A circular silicon rubber ring with an internal diameter of 2.5 cm and a thickness of 3 mm was fixed on to a backing membrane (an imperforated adhesive strip was supplied by Johnson and Johnson Limited, Mumbai). This serves as a compartment for drug reservoir. Gel equivalent to 40 mg of Lovastatin was taken into the compartment as a drug reservoir. Cellulose acetate membrane of known thickness was fixed on the ring with glue to form a membrane moderated therapeutic systems. A double sided adhesive strip was fixed on the rim of the ring above Cellulose acetate membrane.[16]

In vitro diffusion study
Drug diffusion study was conducted using Franz diffusion cell. The receptor compartment was filled with 15 ml of phosphate buffer having pH 7.4 as diffusion media. The skin piece was mounted between the compartments of diffusion cells with the epidermis facing upward into the donor compartment. The membrane moderated therapeutic systems of Lovastatin was placed on the skin. Magnetic stirrer was set at 50 rpm and whole assembly was maintained at 32 ±0.5°C. The amount of drug released was determined by withdrawing 1 ml of sample at regular time intervals for 24 hours. The volume withdrawn was replaced with equal volume
of fresh buffer solution. Samples were analyzed for drug content using a UV spectrophotometer at 239 nm for drug content.[17]

RESULTS AND DISCUSSION
The thin film hydration method or rotary evaporation-sonication method was used to prepare the transfersomal formulations. Formulations were prepared by using different types and concentrations of surfactants. However, a reduction of vesicle size was observed when surfactant concentration increased above 10% w/w. This is due to the formation of a micellar structure instead of the vesicles, which are relatively smaller in size. The entrapment efficiency increased significantly (P<0.05) with increasing edge activator concentration from 5 to 10% (w/w) for transfersomes prepared using Span 80 or sodium deoxycholate or Tween 80. Further increase in edge activator concentration to 15% (w/w). The surfactant concentration in the lipid components of vesicles had shown effect on the entrapment efficiency of transfersomes. The entrapment efficiency decreased with an increase in concentration of surfactant showed a significant decrease in entrapment efficiency. The entrapment efficiency of transfersomes prepared with three different ratios of phospholipid : edge activator formulations was decreased in the following order. (90:10) > (92.5:7.5) > (95:5). The phospholipid : edge activator ratio 90:10% (w/w) showed optimum entrapment efficiency. Upon incorporation of edge activator in low concentration, growth in vesicle size occurred, whereas, further increase in the content of edge activator may have led to pore formation in the bilayers. When edge activator concentration exceeded 15%, mixed micelles coexisted with the transfersomes, with the consequence of lower drug entrapment due to the rigidity and smaller size of mixed micelles. The maximum entrapment efficiency obtained was 91.57% for transfersomes formulation F4 shown in table 2. The surfactant concentration in the lipid components of vesicles had shown effect on the entrapment efficiency of transfersomes. The entrapment efficiency decreased with an increase in concentration of surfactant. The reduction in entrapment efficiency also depended on the surfactant type.

The transfersomes prepared with Span 80 showed the highest entrapment efficiency followed by transfersomes prepared with Tween 80 and finally transfersomes prepared with sodium deoxycholate. These results are related to the HLB values of these edge activators. They are 4.3, 15, and 16 for Span 80, Tween 80 and sodium deoxycholate, respectively. Based on these HLB values, the affinity for lipids was expected to be in the order of Span 80 > Tween 80 > sodium deoxycholate. This consideration explains the higher entrapment efficiency
encountered with Span 80 when compared to Tween 80 and sodium deoxycholate. The entrapment efficiency of the Span 80 formulation was high because of the increase in the ratio of lipid volume in the vesicles as compared to the encapsulated aqueous volume. The entrapment efficiency of transfersomes prepared with various surfactants was decreased in the following order. Tween 80 > sodium Deoxycholate > span 80

The mean particle size, poly dispersity index and zeta potential of the transfersomes were found to be good enough to maintain the physical stability of the transfersomes and shown in Table 2.

The mean particle sizes of all the formed transfersomes varied in the range 411.2±1.65 to 334.0±1.47 nm and 334.0±1.47 nm for F4. The poly dispersity index values of all the formed transfersomes varied in the range 0.319±0.07 to 0.403±0.14 and 0.319±0.07 for F12. The zeta potential of all the formed transfersomes varied in the range --31.8±1.9 to -48.3±2.4 mV and -40.8±1.3 mV for F4 as shown in figure 1.

The transfersomes morphology was analysed by scanning electron microscope. The transfersomes were found to be spherical with good structural composition having a definite boundary as shown in the figure 2.

The transfersomes reservoir gels were evaluated for the Drug content, pH, viscosity, extrudability and spreadability. The results were shown in table 3. The evaluation parameter values of gels shown good characteristic features of gel. Prepared transfersomes were incorporated into gels were subjected to In-vitro diffusion studies and the diffusion profiles were shown in figure 3-6.

The diffusion of drug from transfersomal formulations for a period of 24 hrs revealed that increasing edge activators concentration (from 5 to 10%, w/w) in the transfersomal formulations, further decreasing the drug diffusion. At high edge activator concentrations, the diffusion of the drug was low due to the loss of vesicular structure and formation of rigid mixed micelles. Carbopol gels containing Lovastatin loaded transfersomes prepared with of Soya Lecithin: Tween 80 in 95:5, 92.5:7.5, 90:10 ratios shown drug diffusion for a period of 19 hours, 21 hours, and 23 hours respectively. Whereas the gels prepared with Soya Lecithin: Sodium deoxycholate in 95:5, 92.5:7.5, 90:10 ratios shown drug diffusion for a period of 18 hours, 20 hours, and 22 hours respectively and the gels prepared with Soya Lecithin: span 80
in 95:5, 92.5:7.5, 90:10 ratios shown drug diffusion for a period of 16 hours, 18 hours, and 20 hours respectively. With a view to design a prolonged release dosage form, various types of gel formulations were prepared using polymers like methyl cellulose, sodium carboxy methyl cellulose and hydroxyl propyl methyl cellulose. Lovastatin Transfersomes prepared with Soya Lecithin: Tween 80 in 90:10 ratio were incorporated in those formulations and subjected to diffusion study. The gels prepared with the methyl cellulose, sodium carboxy methyl cellulose, and hydroxy propyl methyl cellulose shown drug diffusion for a period of 20.4 hours, 22 hours and 24 hours respectively. The hydroxyl propyl methyl cellulose gels prepared using the ratio of Soya Lecithin: Tween 80 in 90:10 ratio were selected for the prolonged and controlled therapeutic efficacy. The correlation coefficient values (r) were shown in table 3 and revealed that the diffusion profiles followed zero order kinetics and mechanism of drug diffusion followed by peppas model. The diffusional exponential coefficient (n) values were found to be in between 0.8527 to 0.8750, indicating that the drug diffusion followed non fickian diffusion mechanism.

Table 1: Composition of various transfersome formulations

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug (mg/ml)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Soya Lecithin (%)</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Tween 80 (%)</td>
<td>5</td>
<td>7.5</td>
<td>7.5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium deoxycholate (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>7.5</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Span 80 (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>7.5</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Mean particle size, Poly dispersity Index and zeta potential of the transfersomes

<table>
<thead>
<tr>
<th>S.No</th>
<th>Batch Code</th>
<th>Entrapment Efficiency (%)</th>
<th>Average Particle size (nm±S.D)</th>
<th>Poly dispersity Index'(X±SD)</th>
<th>Zeta Potential (mV±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>77.34 ± 0.7</td>
<td>399.3±2.85</td>
<td>0.374±0.11</td>
<td>-31.8±1.9</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>81.40 ± 1.1</td>
<td>387.2±2.65</td>
<td>0.368±0.17</td>
<td>-34.7±1.3</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>84.56 ± 0.9</td>
<td>375.3±1.2</td>
<td>0.351±0.13</td>
<td>-37.3±1.8</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>80.44 ± 0.6</td>
<td>376.1±2.23</td>
<td>0.362±0.09</td>
<td>-40.8±1.3</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>84.34 ± 0.6</td>
<td>363.4±1.28</td>
<td>0.350±0.05</td>
<td>-44.4±1.6</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>88.67 ± 1.2</td>
<td>351.5±2.12</td>
<td>0.337±0.08</td>
<td>-45.3±1.5</td>
</tr>
<tr>
<td>7</td>
<td>F7</td>
<td>85.37 ± 1.6</td>
<td>366.2±2.13</td>
<td>0.349±0.09</td>
<td>-42.9±1.7</td>
</tr>
<tr>
<td>8</td>
<td>F8</td>
<td>88.43 ± 1.4</td>
<td>345.5±2.16</td>
<td>0.329±0.15</td>
<td>-47.1±1.9</td>
</tr>
<tr>
<td>9</td>
<td>F9</td>
<td>91.57 ± 0.9</td>
<td>334.0±1.47</td>
<td>0.319±0.07</td>
<td>-48.3±2.4</td>
</tr>
</tbody>
</table>
Table 3: In-Vitro Drug Release Kinetic Data of Lovastatin Loaded Transfersomes Prepared with Different Concentrations of surfactants.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Correlation Coefficient Values</th>
<th>Diffusion Rate Constant (mg/hr)</th>
<th>Exponential Coefficient (n)</th>
<th>T50</th>
<th>T90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zero Order</td>
<td>First Order</td>
<td>Higuchi Model</td>
<td>Peppas Model</td>
<td></td>
</tr>
<tr>
<td>LTG1</td>
<td>0.9979</td>
<td>0.7621</td>
<td>0.9229</td>
<td>0.9956</td>
<td>2.05</td>
</tr>
<tr>
<td>LTG2</td>
<td>0.9985</td>
<td>0.7731</td>
<td>0.9311</td>
<td>0.9973</td>
<td>1.88</td>
</tr>
<tr>
<td>LTG3</td>
<td>0.9981</td>
<td>0.7865</td>
<td>0.9366</td>
<td>0.9977</td>
<td>1.74</td>
</tr>
<tr>
<td>LTG4</td>
<td>0.9971</td>
<td>0.7717</td>
<td>0.9207</td>
<td>0.9959</td>
<td>2.09</td>
</tr>
<tr>
<td>LTG5</td>
<td>0.9990</td>
<td>0.6638</td>
<td>0.9269</td>
<td>0.9966</td>
<td>1.98</td>
</tr>
<tr>
<td>LTG6</td>
<td>0.9983</td>
<td>0.6954</td>
<td>0.9349</td>
<td>0.9975</td>
<td>1.82</td>
</tr>
<tr>
<td>LTG7</td>
<td>0.9926</td>
<td>0.7407</td>
<td>0.9089</td>
<td>0.9941</td>
<td>2.24</td>
</tr>
<tr>
<td>LTG8</td>
<td>0.9968</td>
<td>0.7705</td>
<td>0.9197</td>
<td>0.9960</td>
<td>2.08</td>
</tr>
<tr>
<td>LTG9</td>
<td>0.9990</td>
<td>0.7991</td>
<td>0.9278</td>
<td>0.9971</td>
<td>1.96</td>
</tr>
<tr>
<td>LTG10</td>
<td>0.9990</td>
<td>0.6859</td>
<td>0.9271</td>
<td>0.9968</td>
<td>1.95</td>
</tr>
<tr>
<td>LTG11</td>
<td>0.9983</td>
<td>0.8085</td>
<td>0.9352</td>
<td>0.9983</td>
<td>1.80</td>
</tr>
<tr>
<td>LTG12</td>
<td>0.9965</td>
<td>0.7450</td>
<td>0.9355</td>
<td>0.9989</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Figure 1: Zeta Potential Peak of Transfersome prepared with soya Lecithin: Tween 80 in 90:10.

Figure 2: SEM Photographs of Tween 80 (90:10) Transfersome Formulation
Lovastatin transfersomes prepared with Soya Lecithin: Tween 80 in 95: 5 ratio
Lovastatin transfersomes prepared with Soya Lecithin: Tween 80 in 97.5: 2.5 ratio
Lovastatin transfersomes prepared with Soya Lecithin: Tween 80 in 90: 10 ratio

Figure 3: Comparative *in vitro* drug diffusion profiles of Lovastatin transfersomes prepared with different ratios of Soya Lecithin: Tween 80

Lovastatin transfersomes prepared with Soya Lecithin: sodium deoxycholate in 95: 5 ratio
Lovastatin transfersomes prepared with Soya Lecithin: sodium deoxycholate in 97.5: 2.5 ratio
Lovastatin transfersomes prepared with Soya Lecithin: sodium deoxycholate in 90: 10 ratio

Figure 4: Comparative *in vitro* drug diffusion profiles of Lovastatin transfersomes prepared with different ratios of Soya Lecithin: sodium deoxycholate
Narasaiah V.L et al. World Journal of Pharmaceutical Research

Figure 5: Comparative in vitro drug diffusion profiles of Lovastatin transfersomes prepared with different ratios of Soya Lecithin: Span 80

(-♦-) Lovastatin transfersomes prepared with Soya Lecithin: Span 80 in 95: 5 ratio
(-■-) Lovastatin transfersomes prepared with Soya Lecithin: Span 80 in 97.5: 2.5 ratio
(-▲-) Lovastatin transfersomes prepared with Soya Lecithin: Span 80 in 90: 10 ratio

Figure 6: Comparative in vitro drug diffusion profiles of Lovastatin transfersomes prepared with Soya Lecithin: Span 80 in 90:10 ratio from gels prepared with different polymers

(-♦-) Lovastatin transfersomes loaded methyl cellulose gels
(-■-) Lovastatin transfersomes loaded sodium carboxy methyl cellulose gels
(-▲-) Lovastatin transfersomes loaded hydroxyl propyl methyl cellulose gels
REFERENCES

