THROMBOLYTIC EFFECT OF THREE NSAIDS: IN VITRO AND IN SILICO APPROACH.

Abul Hasanat¹, Mohammad Shah Hafez Kabir²*, Nurul Absar²,
Mohammad Nazmul Islam², Mohammed Sohel Chowdhury², Imran Bin Habib²,
Mohammad Nazmul Hoque Jony², Md. Rakibul Hasan², Md. Nazmul Huda²,
Mohammad Sahif Azad³, Tanvir Ahmad Chowdhury²

¹Department of Pharmacy, State University of Bangladesh (SUB), Dhaka- 1205, Bangladesh.
²Department of Pharmacy, International Islamic University Chittagong (IIUC), Chittagong-4203, Bangladesh.
³Department of Electrical and Electronic Engineering, International Islamic University Chittagong (IIUC), Chittagong-4203, Bangladesh.

ABSTRACT

The present study aims to investigate the thrombolytic effect of some NSAIDs by in vitro clot lysis method and in silico molecular docking used to identify whether these drugs interact with the responsible protein (tissue-type plasminogen activator). In vitro clot lysis model was used to observe the thrombolytic effect of paracetamol, aspirin and diclofenac sodium drugs, where they exhibited 42.59 ± 2.40%, 45.90 ± 2.67% and 33.43 ± 3.20% clot lysis, respectively. Reference drug streptokinase exhibited 78.70±0.92% clot lysis. A wide range of docking score found during molecular docking by CPI server. Paracetamol, aspirin and diclofenac sodium drugs showed the docking score -5.6, -6.0 and -1.3, respectively. Aspirin possessed highest clot lysis effect and also showed best docking score among the NSAIDs, where Diclofenac sodium exhibited the opposite. In both in vitro and in silico method, the drugs followed, aspirin > paracetamol > diclofenac sodium order for effect. Further in vivo investigation need to identify the thrombolytic effect of these NSAIDs and also require making out the mechanism of them as thrombolytic agents.
KEYWORDS: NSAIDs, PASS prediction, Molecular docking, paracetamol, aspirin, diclofenac sodium.

1 INTRODUCTION

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are a diverse group of compounds that are mainly used to reduce fever, pain and inflammation. NSAIDs are among the most frequently used classes of medications, which, as of 2009, represented a market worth more than $9 billion among prescribed medications in the USA (Melnikova). NSAIDs exert their pharmacological action by inhibiting the synthesis of prostaglandins (PGs) by non-selectively blocking cyclooxygenases 1 and 2 (COX-1 and COX-2) or by selectively blocking COX-2. Inhibition of COX-1 is also responsible, in part, for gastrointestinal side effects, which are the most frequent side effects of NSAIDs (Laine, 2002).

Blood coagulation creates in the circulatory system which consolidates a mechanism in human body to repair the injured blood vessel (Kader SMA, 2016; Key, Makris, O'Shaughnessy, & Lillicrap, 2009). In the event that thrombus is framed when it is not required, this can deliver noteworthy results Wedro B. Blood clot. Medicine Net.Com, http://www.medicinenet.com/blood_clots/article.htm.(Uddin MS, 2016) like embolism, ischemia, heart attack, stroke and so forth (Hasan M & MR, 2016; Shapiro). Embolism occurs when blood clot is formed inside a blood vessel or an artery and remains there which fully or partially block blood supply to a part of body resulting potentially severe consequences. For example, an aspiratory embolism leads illogical breathing trouble, hemoptysis, and mid-section torment when one or more supply routes in lung are obstructed by embolus (Ali et al., 2014; Mohammad Shah Hafez Kabir, 2015). Blood clot can block blood flow or oxygen to tissue which results in ischemia. Cardiac ischemia appears when blood flow to cardiac muscle becomes fully or partially restricted resulting shortness of breath, syncope, angina, myocardial infarction, cardiac arrhythmia, or even death (Chowdhury et al., 2015; Maseri et al., 1978; Tarek et al., 2015). Blood clots may also disrupt the flow of blood to the brain, leading to an ischemic stroke (Shiber, Fontane, & Adewale, 2010). An ischemic stroke can happen as an aftereffect of a hindrance inside of a vein supplying blood to the cerebrum (thromblic stroke) or embolus created from cluster elsewhere in the body and goes to obstruct a little corridor in the mind (embolic stroke). Sometimes blood clot forms in the heart and get trapped in the brain's narrow arteries
cerebral stroke). These outcomes deny the cerebrum of fundamental oxygen which bring about lasting mind cell demise in and around the influenced range (Ohira et al., 2006).

Our aim of this study to investigate the thrombolytic effect of some NSAIDs like, paracetamol, aspirin and diclofenac sodium, which were studied by using in vitro clot lysis and in silico Molecular docking model. However, no earlier studies have been conducted experimentally to characterize the thrombolytic effect of these NSAIDs.

2 MATERIALS AND METHODS
2.1 In vitro thrombolytic effect
2.1.1 Drugs and chemicals
Paracetamol, aspirin and diclofenac sodium were got from a renowned Pharmaceuticals company as gift, Bangladesh. To the commercially available lyophilized streptokinase (SK) vial (Square Pharmaceuticals Ltd.) of 1500000 I.U., 5mL sterile distilled water was added and mixed properly. This suspension was used as a stock from which 100 𝜇L (30,000 I.U.) was used for in vitro thrombolysis. All chemicals and reagents were of reagent grade.

2.1.2 Drugs solution preparation
A 100 mg each of the drugs was suspended in 10 ml distilled water and the suspension was shaken vigorously on a vortex mixer. The suspension was kept overnight and decanted to remove the soluble supernatant, which was filtered through a 0.22-μm syringe filter. A 100 𝜇L of this aqueous preparation was added to the Eppendorf tube tubes containing the clots to check thrombolytic activity.

2.1.3 In vitro Thrombolytic effect assay
Experiments for clot lysis were carried as reported earlier (Prasad et al., 2006). Briefly, 2.5 ml venous blood drawn from the healthy volunteers was distributed in five different pre weighed sterile Eppendorf tube (0.5 ml/tube) and incubated at 37°C for 45 min. After clot formation, serum was completely removed without disturbing the clot and each tube having clot was again weighed to determine the clot weight (clot weight = weight of clot containing tube – weight of tube alone). To each Eppendorf tube containing pre-weighted clot, 100 𝜇L of aqueous solution of paracetamol, aspirin and diclofenac sodium were added separately. As a positive control, 100 𝜇L of SK and as a negative non-thrombolytic control, 100 𝜇L of distilled water were separately added to the control tubes numbered. All the tubes were then incubated at 37°C for 90 min and observed for clot lysis. After incubation, fluid released was removed
and tubes were again weighed to observe the difference in weight after clot disruption. Difference obtained in weight taken before and after clot lysis was expressed as percentage of clot lysis. The experiment was repeated with the blood samples of the 12 volunteers.

2.2 In silico Molecular docking

All the NSAIDs structures need to upload in mol2 format with charges and hydrogens added. When a molecule submitted, The CPI server checks the format suitability and calculates the interaction profile of this drug towards all the targets in the database using DOCK6 (Ewing, Makino, Skillman, & Kuntz, 2001; Luo et al., 2011). Users can view the real-time progress online, and the page showing the current docking status of the uploaded drug will also be provided for bookmarking. It takes between 6 and 20 h to finish a one-molecule task and an email will be sent on completion. The outputs comprise the two following major elements:

(i) Library drugs which share similar (or opposite) interaction profile with the user’s molecule, ranked by the similarity (or disparity) with known indications and ADR information, suggesting the underlying new indication and ADR of the user’s molecule.

(ii) The candidate off-targets that tend to interact with the user’s molecule. The server will visualize the drug-protein interactions, with amino acid residues around 6Å of the molecule highlighted.

2.3 STATISTICAL ANALYSIS

The significance between % clot lysis by SK and drugs tested by Tukey test using the software SPSS, version 22.0 (SPSS for Windows, Version 22.0, IBM Corporation, New York, USA). Data are expressed as mean ± SEM. The mean difference between positive and negative control was considered significant at P values < 0.05 and 0.0001.

3. RESULTS

3.1. In Vitro Thrombolytic effect

In thrombolytic effect assay, addition of 100μl streptokinase as positive control (30,000 I.U.) to the clots and subsequent incubation for 90 minutes at 37°C, showed 79.50±1.18% lysis of clot. On the other hand, distilled water treated as negative control exhibited a negligible percentage of lysis of clot (5.70±1.80%). The mean difference in clot lysis percentage between positive and negative control was found statistically very significant (P<0.0001). Treatment of clots with paracetamol, aspirin and diclofenac sodium drugs provided the clot lysis 42.59 ± 2.40%, 45.90 ± 2.67% and 33.43 ± 3.20%, respectively. All the results
presented in Table 1 and Figure 1. The thrombolytic effects of antidiabetic drugs are as follows:
Aspirin > Paracetamol > Diclofenac sodium.

Table 1: Clot lysis effect of paracetamol, aspirin and diclofenac sodium drugs on human blood.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>% of clot lysis (mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control (water)</td>
<td>5.70±1.80</td>
</tr>
<tr>
<td>Positive control (streptokinase)</td>
<td>79.50±1.18</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>42.59 ± 2.40 a,b</td>
</tr>
<tr>
<td>Aspirin</td>
<td>45.90 ± 2.67 a,b</td>
</tr>
<tr>
<td>Diclofenac sodium</td>
<td>33.43 ± 3.20 a,b</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 12); aP <0.0001, Tukey test as compared to negative control, bP < 0.001, compared to positive control. Statistical representation of the effective clot lysis percentage by drugs preparations, positive thrombolytic control (streptokinase) and negative control (sterile distilled water) processed by Tukey test by using SPSS for windows, version 22.0.

Figure 1: Clot lysis effect of paracetamol, aspirin and diclofenac sodium drugs on human blood.
Values are mean ± SEM (n = 12); aP <0.0001, Tukey test as compared to negative control (Water), bP < 0.001, compared to positive control (Streptokinase). Statistical representation of the effective clot lysis percentage by drugs preparations, positive thrombolytic control
(streptokinase) and negative control (sterile distilled water) processed by Tukey test by using SPSS for windows, version 22.0.

3.2 In silico Molecular docking
In the present study, molecular docking performed to identify the docking score of paracetamol, aspirin and diclofenac sodium towards tissue-type plasminogen activator (PDB code 1A5H), which is a protein involved in the breakdown of blood clots. A wide range of docking score found during molecular docking by CPI server. Paracetamol, aspirin and diclofenac sodium drugs showed the docking score -5.6, -6.0 and -1.3, respectively. All the results presented in Table 2 and Figure 2. The docking score of antidiabetic drugs are as follows:
Aspirin > Paracetamol > Diclofenac sodium.

Table 2: Docking results with selected NSAIDs in the tissue-type plasminogen activator.

<table>
<thead>
<tr>
<th>Drug name</th>
<th>Docking Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>-5.6</td>
</tr>
<tr>
<td>Aspirin</td>
<td>-6.0</td>
</tr>
<tr>
<td>Diclofenac sodium</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

Figure 2: Molecular docking analysis of paracetamol, aspirin and diclofenac sodium with tissue-type plasminogen activator complex obtained from docking.
4 DISCUSSIONS

In our thrombolytic assay, the comparison of positive control with negative control clearly demonstrated that clot dissolution does not occur when water was added to the clot. When compared with the clot lysis percentage obtained through water, a well significant (P value < 0.001) thrombolytic activity was observed after treating the clots paracetamol, aspirin and diclofenac sodium. However, the clot lysis values for diclofenac sodium were lower than other drugs.

In molecular docking study, Paracetamol, aspirin and diclofenac sodium drugs showed the docking score -5.6, -6.0 and -1.3, respectively towards tissue-type plasminogen activator. From all these antidiabetic drugs, aspirin exhibited best docking score (-6.0), which also possessed maximum clot lysis (45.90 ± 2.67%) effect on human blood. After aspirin, paracetamol showed well docking score (-5.6) and exhibited clot lysis (42.59 ± 2.40%) effect compare to standard drugs (streptokinase). On the other hand, diclofenac sodium showed clot lysis (33.43 ± 3.20%) effect; this was far from the thrombolytic effect of aspirin. And, diclofenac sodium also showed very low docking score (-1.3).

From the present study, it was clear that NSAIDs have moderate to well thrombolytic effect. We found that some of NSAIDs have good thrombolytic effect and also they showed well docking score for tissue-type plasminogen activator, so we can think the use of NSAIDs for thrombosis management.

5 CONCLUSION

Aspirin possessed highest clot lysis effect and also showed best docking score among the NSAIDs, where Diclofenac sodium exhibited the opposite. In both in vitro and in silico method, the drugs followed, aspirin > paracetamol > diclofenac sodium order for effect. Further in vivo investigation need to identify the thrombolytic effect of these NSAIDs and also require making out the mechanism of them as thrombolytic agents.

Conflict of interest statement

The authors declare that they have no conflict of interest.

ACKNOWLEDGMENT

The authors are grateful to the authority of International Islamic University Chittagong, Bangladesh, for providing the facilities to conduct this research work. Authors would also
like to thank Mr. Md. Mominur Rahman, Assistant professor, International Islamic University Chittagong, Bangladesh for his supervision in the experiments.

REFERENCES

