DEGRADATION STUDIES OF CEFUROXIME TABLET BY USING SPECTROPHOTOMETRIC TECHNIQUES

Nadeem Sheikh*, Dr. D. P. Kawade¹ and Dr. D. R. Chaple²

¹Department of Pharmaceutical Chemistry, Priyadarshini J.L College of Pharmacy, Hingna, Nagpur-440016.
²Department of Pharmaceutical Analysis, Priyadarshini J.L College of Pharmacy, Hingna, Nagpur-440016.

ABSTRACT

Forced degradation is a process whereby the natural degradation rate of a product is increased by the application of additional stress. A forced oxidative degradation study of Cefuroxime in tablet form was performed. The study was conducted based on available guidelines and main reference. Cefuroxime has a cepham ring in its structure. It can easily undergo hydrolytic, oxidative, thermal & photolytic degradation and the degraded products were analyzed by using UV spectrophotometry. The assay values of degraded products in different time intervals were analyzed by using UV spectrophotometry. Forced degradation was performed in tablet form using 0.1N Sodium hydroxide, 0.1N Hydrochloric acid, 30% Hydrogen peroxide solution respectively. Cefuroxime was subjected to hydrolytic, oxidative, photolytic and thermal degradation at different time intervals based on reference. The assay value of hydrolytic degradation of sample using 0.1N Sodium hydroxide was found to be 70.44% at the end of the 90 mins and 21.88% at the end of 1st day degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. The assay value of hydrolytic degradation sample using 0.1N Hydrochloric acid was found to be 70.94% at the end of the 90 mins and 18.64% at the end of 1st day degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. The assay value of oxidative degradation sample using 30% Hydrogen peroxide was found to be 67.90% at the end of the 90 mins and 59.12% at the end of 1st day degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. In Thermal degradation only small amount of degradation was observed up to 5th
day. It shows that sample exhibit stability against thermal degradation. At the end of the 5th day the assay value of sample was found to be 75.33\% respectively. In Photolytic degradation also small amount of degradation was observed up to 5th day. It shows that sample exhibit stability against sunlight. At the end of the 5th day the assay value of sample was found to be 72.88\%. It was concluded that Cefuroxime was found unstable under hydrolytic and oxidative condition while is stable under thermal and photolytic degradation.

KEYWORDS: Cefuroxime, Hydrolytic degradation, Oxidative degradation, Thermal and Photolytic degradation.

INTRODUCTION

Forced Degradation studies are used to identify reaction which may occur to degrade a processed product; usually conducted before final formulation, forced degradation uses external stresses to rapidly screen material stabilities. Cefuroxime is indicated for the prophylaxis and treatment of infections caused by bacteria susceptible to this particular form of antibiotic. There are very few reported methods for analysis of degradation product of Cefuroxime are selected for the study. Forced Degradation study is carried out to demonstrate the specificity when developing stability indicating method and to help identify reaction that causes degradation of pharmaceutical product.[2] Cefuroxime was found to be a ring opening degradation product because of presence of lactam and amide linkage.[7] A forced degradation study of Cefuroxime axetil has been carried out under alkali and acidic condition using 0.1N NaOH and 0.1N HCl respectively and thermal and photolytic by UV spectrophotometry.[1]

MATERIALS AND METHODS

Apparatus

Shimadzu 1800 UV visible spectrophotometer equipped with 1cm matched quartz cells was used in present study for absorbance measurements and all the determinations were carried out at room temperature.

Reagents and Materials

- Cefuroxime tablets was purchased from medical shop (Cexil 2G - 250mg).
- All chemicals and reagents used were of analytical grade and double distilled water was used throughout the investigation.
- 0.1N NaOH, 0.1N HCl and 30\% \text{H}_2\text{O}_2 was prepared according to I.P.1996
METHODS

Forced Hydrolytic Degradation Using 0.1N NaOH (Intraday Study) Standard preparation

Cefuroxime was transferred to volumetric flask and dissolved in ethanol to achieve a concentration of 1mg/mL; an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm.[8]

Sample preparation (stress)

Cefuroxime was transferred to volumetric flask and dissolved in 10 mL of ethanol to dissolve the drug substance, and then 0.1N NaOH was added to achieve a concentration of 1mg/mL. After 30mins, an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm. The same procedure was repeated for 60mins, and 90mins time interval.

Blank preparation

A blank solution of 0.1N NaOH solution was prepared in a similar manner. The procedure was repeated thrice. After the stipulated time, the absorption of the resulting solution showed maxima 278nm against reagent blank treated in the same way. Three such determinations were made and the assay value was estimated.

Table 1: Results Obtained from Hydrolytic Degradation 0.1 N NaOH (Intraday studies).

<table>
<thead>
<tr>
<th>Stress condition (Alkali hydrolysis)</th>
<th>Time (Mins)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 N Sodium Hydroxide</td>
<td>30</td>
<td>84.40</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>75.73</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>70.44</td>
<td>Degradation observed</td>
</tr>
</tbody>
</table>

Forced Hydrolytic Degradation Using 0.1N NaOH (Interday Study) Standard preparation

The standard preparation was prepared in a similar manner which was mentioned in an intraday preparation.

Sample preparation (stress)

Same method was followed, but the final solution was scanned and absorption was recorded at the following time intervals 1st, 3rd, and 5th day.
Blank preparation
Similar to intraday preparation.

Table 2: Results Obtained from Hydrolytic Degradation 0.1 N NaOH (Interday studies).

<table>
<thead>
<tr>
<th>Stress condition (Alkali hydrolysis)</th>
<th>Time (Mins)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 N Sodium Hydroxide</td>
<td>1<sup>st</sup> day</td>
<td>21.88</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>3<sup>rd</sup> day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
<tr>
<td></td>
<td>5<sup>th</sup> day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
</tbody>
</table>

Forced Hydrolytic Degradation Using 0.1N HCl (Intraday Study) Standard preparation

Cefuroxime was transferred to volumetric flask and dissolved in ethanol to achieve a concentration of 1mg/mL; an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm.[8]

Sample preparation (stress)
Cefuroxime was transferred to volumetric flask and dissolved in 10 mL of ethanol to dissolve the drug substance, and then 0.1N HCl was added to achieve a concentration of 1mg/mL. After 30mins, an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm. The same procedure was repeated for 60mins, and 90mins time interval.

Blank preparation
A blank solution of 0.1N HCl solution was prepared in a similar manner. The procedure was repeated thrice. After the stipulated time, the absorption of the resulting solution showed maxima 278nm against reagent blank treated in the same way. Three such determinations were made and the assay value was estimated.

Table 3: Results Obtained from Hydrolytic Degradation 0.1N HCl (Intraday studies).

<table>
<thead>
<tr>
<th>Stress condition (Acid hydrolysis)</th>
<th>Time (Mins)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 N Hydrochloric acid</td>
<td>30</td>
<td>87.24</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>80.06</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>70.94</td>
<td>Degradation observed</td>
</tr>
</tbody>
</table>

Forced Hydrolytic Degradation Using 0.1N HCl (Interday Study) Standard preparation
The standard preparation was prepared in a similar manner which was mentioned in an intraday preparation.
Sample preparation (stress)
Same method was followed, but the final solution was scanned and absorption was recorded at the following time intervals 1st, 3rd, and 5th day.

Blank preparation
Similar to intraday preparation.

Table 4: Results Obtained from Hydrolytic Degradation 0.1N HCl (Interday studies).

<table>
<thead>
<tr>
<th>Stress condition (Acid hydrolysis)</th>
<th>Time (days)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 N Hydrochloric acid</td>
<td>1st day</td>
<td>18.64</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>3rd day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
<tr>
<td></td>
<td>5th day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
</tbody>
</table>

Forced Oxidative Degradation using 30% H\textsubscript{2}O\textsubscript{2} (Intraday Study) Standard preparation
Cefuroxime was transferred to volumetric flask and dissolved in ethanol to achieve a concentration of 1mg/mL; an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm.[8]

Sample preparation (stress)
Cefuroxime was transferred to volumetric flask and dissolved in 10 mL of ethanol to dissolve the drug substance, and then 30% Hydrogen peroxide was added to achieve a concentration of 1mg/mL. After 30mins, an aliquot solution was diluted with distilled water to get a final concentration of 10μg/mL. The solution was scanned in the UV region and the maximum absorbance was recorded at 278nm. The same procedure was repeated for 60mins, and 90mins time interval.

Blank preparation
A blank solution of 30% H\textsubscript{2}O\textsubscript{2} solution was prepared in a similar manner. The procedure was repeated thrice. After the stipulated time, the absorption of the resulting solution showed maxima 278nm against reagent blank treated in the same way. Three such determinations were made and the assay value was estimated.
Table 5: Results Obtained from Oxidative Degradation using 30% H2O2 (Intraday studies).

<table>
<thead>
<tr>
<th>Stress condition (Oxidation)</th>
<th>Time (Mins)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Hydrogen peroxide</td>
<td>30</td>
<td>86.19</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>74.74</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>67.90</td>
<td>Degradation observed</td>
</tr>
</tbody>
</table>

The standard preparation was prepared in a similar manner which was mentioned in an intraday preparation.

Sample preparation (stress)

Same method was followed, but the final solution was scanned and absorption was recorded at the following time intervals 1st, 3rd, and 5th day.

Blank preparation

Similar to intraday preparation.

Table 6: Results Obtained from Oxidative Degradation using 30% H2O2 (Interday studies).

<table>
<thead>
<tr>
<th>Stress condition (Oxidation)</th>
<th>Time (days)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Hydrogen peroxide</td>
<td>1st day</td>
<td>59.12</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>3rd day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
<tr>
<td></td>
<td>5th day</td>
<td>0</td>
<td>Complete Degradation</td>
</tr>
</tbody>
</table>

Forced Thermal Degradation at 50ºC (Interday Study) Sample preparation (stress)

Cefuroxime tablets were crushed weighed and transferred to a petri dish. This petri dish was placed in a hot air over at the temperature of 50ºC. The next day 50mg equivalent of Cefuroxime tablet powder was weighed from a petri dish and transferred to 50mL volumetric flask. It was dissolved in ethanol and the volume made up to 50mL. An aliquot solution was diluted with distilled water to get a final concentration of 10µg/mL. The same procedure was repeated for 3rd and 5th day.

Blank preparation

Distilled water was used as a blank.
Table 7: Results Obtained from Thermal Degradation at 50°C (Interday studies).

<table>
<thead>
<tr>
<th>Stress condition (Thermal)</th>
<th>Time (days)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> day</td>
<td></td>
<td>95.59</td>
<td>Degradation observed</td>
</tr>
<tr>
<td>50°C</td>
<td>3<sup>rd</sup> day</td>
<td>83.78</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>5<sup>th</sup> day</td>
<td>75.33</td>
<td>Degradation observed</td>
</tr>
</tbody>
</table>

Photolytic degradation using sunlight

Cefuroxime tablets were crushed weighed and transferred to a petri dish. This petri dish was placed under a sun light. The next day 50mg equivalent of Cefuroxime was taken from the petri dish and transferred to 50mL volumetric flask. It was dissolved in ethanol and the volume made up to 50mL. An aliquot solution was diluted with distilled water to get a final concentration of 10µg/mL. The same procedure was repeated for 3rd and 5th day.

Blank preparation

Distilled water was used as a blank.

Table 8: Results Obtained from Photolytic Degradation using Sunlight (Interday studies).

<table>
<thead>
<tr>
<th>Stress condition (Photolytic)</th>
<th>Time (days)</th>
<th>Sample Percentage Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> day</td>
<td></td>
<td>94.91</td>
<td>Degradation observed</td>
</tr>
<tr>
<td>Sunlight</td>
<td>3<sup>rd</sup> day</td>
<td>88.17</td>
<td>Degradation observed</td>
</tr>
<tr>
<td></td>
<td>5<sup>th</sup> day</td>
<td>72.88</td>
<td>Degradation observed</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

- **Hydrolytic Degradation using 0.1N NaOH (Intraday and Interday)**

In intraday and interday hydrolytic degradation drug sample showed extensive degradation. The assay value of hydrolytic degradation of sample using 0.1N Sodium hydroxide was found to be 70.44% at the end of the 90 mins (Intraday) and 21.88% at the end of 1st day (Interday) degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. The study results indicated that Cefuroxime was unstable under alkali hydrolysis condition.

- **Hydrolytic Degradation using 0.1N HCl (Intraday and Interday)**

In intraday and interday hydrolytic degradation drug sample showed extensive degradation. The assay value of hydrolytic degradation of sample using 0.1N Hydrochloric acid was found to be 70.94% at the end of the 90 mins (Intraday) and 18.64% at the end of 1st day (Interday).
degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. The study results indicated that Cefuroxime was unstable under acid hydrolysis condition.

- **Oxidative Degradation using 30% H2O2 (Intraday and Interday)**
 In intraday and interday hydrolytic degradation drug sample showed extensive degradation. The assay value of oxidative degradation sample using 30% Hydrogen peroxide was found to be 67.90% at the end of the 90 mins (Intraday) and 59.12% at the end of 1st day (Interday) degradation. Complete degradation of Cefuroxime was observed at the end of 3rd day onwards. The study results indicated that Cefuroxime was unstable under oxidative condition.

- **Thermal Degradation at 50°C**
 In Thermal degradation only small amount of degradation was observed up to 5th day. At the end of the 5th day the assay value of sample was found to be 75.33% respectively. It shows that sample exhibit stability against thermal degradation.

- **Photolytic Degradation using Sunlight**
 In Photolytic degradation also small amount of degradation was observed up to 5th day. At the end of the 5th day the assay value of sample was found to be 72.88%. It shows that sample exhibit stability against sunlight.

CONCLUSION

The forced degradation studies (Hydrolytic, Oxidative, Thermal and Photolytic) of Cefuroxime tablets was studied by UV visible spectroscopy at various time intervals 30mins, 60mins, 90mins (Intraday) and 1st, 3rd, 5th day (Interday). Finally, it was concluded that Cefuroxime was found to be unstable under hydrolytic and oxidative condition while it is stable under thermal and photolytic degradation.

REFERENCES

2. Deepti Jain a, Pawan Kumar Basniwa, Forced degradation and impurity profiling: Recent trends in analytical perspectives, Journal of Pharmaceutical and Biomedical Analysis,

9. Indian Pharmacopoeia, 2010; 1026-1028.
