A CONCEPTUAL STUDY ON HYDROCELE: A CRITICAL REVIEW

Dr. Ankit Kumar*1 and Dr. Mukund Dhule2

1PG. Scholar, Department of Shalya Tantra, Parul Institute of Ayurved, Parul University.
2HOD and Professor, Department of Shalya Tantra, Parul Institute of Ayurved, Parul University.

ABSTRACT

Introduction: A hydrocele is defined as the pathological build-up of serous fluid in the pelvis and groin due to various etiologies such as diseases or trauma. It has distinct clinical manifestations, particularly discomfort and psychosocial distress. Understanding the anatomy, embryology, and physiology associated with hydrocele formation is crucial to understand its onset and progression. Materials and Method: Classification of hydrocele and its etiology, complications evaluation and management. Conclusion: Due to the range of classifications and etiologies of hydrocele in the pelvis and groin, a deliberate differential diagnosis is essential to avoiding imminent life-threatening complications as well as providing the appropriate treatment. Results: Appropriately classifying the hydrocele as primary, secondary communicating, secondary non communicating, microbe-induced, inflammatory, iatrogenic, trauma-induced, tumor-induced, canal of Neck, congenital, and giant is important for identifying the underlying etiology.

KEYWORDS: Hydrocele, Scrotal pain, Scrotal swelling, Incontinence.

INTRODUCTION

A hydrocele is marked by a fluid-filled sac typically found in the scrotum, and less commonly in the external genitalia and pelvic regions. It may be a manifestation of certain severe underlying diseases.

The fluid collection may result from patent processus vaginalis or an imbalance of secretion and absorption within the tunica vaginalis. A hydrocele can be organized into several
classifications that can affect males and females of any ages. Hydrocele is characteristically painless, but can lead to physical and psychological complications.

Further complications may be avoided if proper diagnostic and therapeutic techniques are employed. The anatomical, embryological, and physiological background of hydrocele, we comprehensively review its classifications, etiology, pathogenesis, secondary complications, evaluation, and management.

**Anatomy, Embryology, and Physiology**

The inguinal region, or groin, is located at the bottom of the anterior abdominal wall. It embodies a tubular passage known as the inguinal canal, which spans from the pelvis to the groin. The inguinal canal has two openings: the deep inguinal ring and superficial inguinal ring. Though the structure of the canal is similar among males and females, its function varies with gender.

For males, the canal allows the spermatic cord to pass between the testes and abdomen.

In females, the canal provides a path for the round ligament of the uterus from the uterus to the labium majus.

During embryonic development, the inguinal canal also embodies the processus vaginalis, a structure that develops from the peritoneum during gestational week 12.

In males, it extends through the inguinal canal into the scrotum, allowing the testes to descend into the scrotal sac.

Following completion of testicular descent, the processus vaginalis undergoes programmed cell death to obliterate the path between the peritoneum and scrotum. After closure, the lower portion of the processus.

Vaginalis becomes the tunica vaginalis testis. Failure to close results in a patent processus vaginalis, which leads to complications such as communicating hydrocele and inguinal hernia.

Failure to close the processus vaginalis in female’s results in formation of a patent pouch of the peritoneum called the canal of Nuck. The canal of Nuck is also associated with complications of inguinal hernia and communicating hydrocele.\(^1\)
Hydrocele results from the collection of fluid in the bilayered tunica vaginalis. This fluid typically accumulates in infants due to the patent processus vaginalis, allowing peritoneal fluid to flow through the processus vaginalis into the scrotum and surround the testicle.\[^2\]

If the excess fluid cannot drain, accumulation results. The potential origins of fluid in the scrotum are outlined.

**Etiology**

The most common tends to be the disruption of the lymphatic system. Surgeries, such as laparoscopic varicocelectomy, can either partially or completely disrupt testicular lymphatic drainage, which leads to the postoperative complication of hydrocele.\[^50\]

The imbalance of drainage and input into the lymphatic tissue surrounding the scrotum is another cause of hydrocele.\[^9,51\]

When hydrocele is the non communicating type, aquaporin channels may be responsible. (Hattori et al.\[^52\])

Investigated the expression of aquaporin channels in relation to noncommunicating hydrocele. Tunica vaginalis of patients with hydrocele were studied and then compared to a non-hydrocele infected male control.

The study concluded by noting an over expression of aquaporin channel one within the tunica vaginalis in patients with a hydrocele.

The hydrocele fluid may manifest from increased fluid output from capillaries that contain the over expressing aquaporin channel 1, leading to lymphatic drainage that is less than the output.

A hydrocele can also occur after renal transplantation. This arises most probable because of lymphatic that have been disturbed. (Penn et al.\[^53\]).

Discusses a study consisting of a series of renal transplantations and testicular complications.

Hydrocele was the most common complication due to a disruption of lymphatic channels along the iliac vessel. The lymphatic disruption caused the hydrocele because it negatively affected the absorption of the lymphatic’s despite regular secretion of the fluid.
SECONDARY COMPLICATIONS
Masses that abnormally present within the scrotum have the potential to affect negatively the surroundings. The pressure within the testis can decrease the efficiency of spermatogenesis.

According to 120 biopsies conducted by (Dandapat et al.[62]).

Patients with and without hydrocele, those with hydrocele exhibited atrophy in 8% and flattening of the testis in 22% of cases studied 10% percent of affected patients had a partial arrest of spermatogenesis, while 8% had a total arrest.

Other histological findings include thickening of the basement membrane, tunica albuginea, and tunica vaginalis. The arrests of spermatogenesis likely due to increased pressure on the blood supply on the testis from edema.[62,63]

Failure to perform spermatogenesis may also result from a rise in intrascrotal temperature.[62]

Water, which has a very high specific heat compared to other liquids, is the major component of hydrocele. Due to resistance to the thermoregulatory mechanism, water can hold onto heat very well, leaving the area incapable of heat dissipation. High heat from water being trapped within the scrotum leaves the scrotum at a temperature too high for optimum spermatogenesis.[64,65]

Semen quality has been shown to decrease by 40% for every 1°C the scrotum increases.[66]

Hydrocele has a direct link to male infertility. Benign and malignant tumors of the tunica vaginalis may be overshadowed by hydrocele. (Zaslau et al.[67]).

MANAGEMENT
There are two categories of surgical treatment, invasive and noninvasive.

Non invasive Options
Examination and ultrasound with duplex Doppler in upright and supine position must be performed before aspiration and sclerosing agents are used to treat hydrocele.

Two of the more frequently used noninvasive treatment options are aspiration and sclerotherapy. These methods are best used in conjugation with each other. When hydrocele is treated with aspiration alone, it typically reappears.[110]
According to one study, aspiration and sclerotherapy with doxycycline has an 80% success rate. There are other types of sclerosing agents besides doxycycline that may be used with sclerotherapy; Such agents may be considered just as successful as hydrocelectomy.

**Surgical Procedures**

Hydrocelectomy is one of the main surgical treatments for hydrocele. This procedure is highly recommended when the hydrocele is large and persistent.[124]

Hydrocelectomy is more invasive compared to its nonsurgical counterpart, but in some cases has a higher success rate.

The main drawback of hydrocelectomy is its postoperative complications. Postoperative complications include scrotal edema, hematoma, chronic pain, decreased fertility, persistent swelling, Fournier’s gangrene, and infection.[125–127]

Minimal access hydrocelectomy is a suggested alternative because it is less invasive and involves a smaller incision. A new minimal access hydrocelectomy is described by Saber that minimizes traumatic insult to the patient without sacrificing safety and efficacy. The operative time is quick (12–18 minutes) and recovery time is shortened in comparison with a traditional hydrocelectomy.[126]

**Alternative Treatment**

Infants who present with a hydrocele should undergo a more conservative approach to their hydrocele repair if little or no complications are present. (Koski et al.).

**CONCLUSION**

Numerous etiologies are responsible for hydroceles that can be classified as primary, secondary communicating, secondary noncommunicating, microbe-induced, inflammatory, iatrogenic, trauma-induced, tumor-induced, canal of Nuck, congenital, and giant. Hydrocele should be taken seriously and monitored closely, whether it is present in infants or older patients, especially when rare secondary complications are a threat to the patient’s life or quality of life.

Diagnosis of hydrocele should shift away from transillumination and more towards radiologic imaging in both supine and upright positions. All treatment options should be considered before eliminating methods on a case-by-case basis.
REFERENCES
15. Noroee J, Dreyer G: A mechanism for chronic filarial hydrocele with implications for
30. Ozveren MF, Kazez A, Cetin H, Ziyal IM: Migration of the abdominal catheter of a


59. Ilbey YO, Ozbek E, Simsek A: Torsion of testis with large epididymal cyst in a 57-
61. Nazir SS, Khan M: Thrombosis of the dor-sal vein of the penis (Mondor’s Disease):


