
![]() |
|||||||||||||
WJPR Citation
|
| All | Since 2020 | |
| Citation | 8502 | 4519 |
| h-index | 30 | 23 |
| i10-index | 227 | 96 |
REVIEW ON: IN-SITU NASAL GEL
Bansode Ajit S.*, Jadhav S.L., Gadhave Manoj V., Devhadrao Nitin, Gaikwad D. D.
Abstract Recently, controlled and sustained drug delivery has become the standard in modern Pharmaceutical design and an intensive research have been undertaken in achieving much better drug product effectiveness, reliability and safety. This interest has been sparked by the advantages shown by in situ forming polymeric delivery systems such as ease of administration and reduced frequency of administration, improved patient compliance and comfort. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various biodegradable polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DLlactic acid), poly(DL-lactide-co-glycolide) and polycaprolactone. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. Keywords: Biodegradable polymers, controlled release, in situ gels, sustained release. [Full Text Article] [Download Certificate] |
